
May 10, 2019

Vehicle Detection and Tracking
Proximity Algorithm research by James W. Dunn

Goal: Annotate a
video sequence with identified
vehicles in adjacent lanes.

02 of 34

Contents
03 Analysis
08 Histogram of Oriented Gradients
11	 Classifier
13 Sliding window search
19 Video implementation
30 Final video
31 Discussion
34 References

03 of 34

Analysis
Traffic	is	a	reality.	To	warrant	safe	travel	from	point	A	to	point	B,	obstacles	must	be	identified	
and avoided. The supplied project video from a forward-facing dashcam contains 50 seconds

Field	of	view,	illustrating	the	aim	to	identify	vehicles	as	they	transit	the	camera	viewport.

04 of 34

of	highway	driving	in	which	two	vehicles	pass	through	the	camera	field	in	adjacent	lanes	
on	the	right.	Though	objects	are	easily	seen	and	understood	by	humans,	the	goal	here	is	to	
deconstruct the scene with a set of computer vision techniques and annotate each frame with
an approximate bounding box around the vehicle location.

While	the	source	video	contains	additional	‘safe’	vehicles	in	the	distance	and	across	the	median,	
the project scope is limited primarily to identifying the ‘cautionary’ elements in the two adjacent
lanes (a white Lexus LS460 and a black Lexus IS250).

Aligning	with	the	goal	of	safe	travel,	recurring	themes	include	accuracy,	precision,	and	
performance.	In	addition	to	locating	obstacles	correctly	and	exactly,	an	efficient	solution	can	be	
implemented in real-time as one of the many components in a self-driving car. Peripheral early-
detection can help with accuracy and inform the navigator of potentially hazardous conditions.

Input data quality
Reasoning	that	accurate	input	leads	to	improved	output,	an	inspection	to	determine	quality	of	
the	supplied	training	data	revealed	both	‘good’	and	‘bad’	data.	For	example,	on	the	plus	side,	
1) the	majority	of	vehicles	contain	the	features	of	passenger	cars,	as	opposed	to	trucks,	busses,
and other transport; 2) the angle of view aligns primarily with that of the supplied video; 3)
mostly consistent spatial scaling [64×64 images]; 4) mostly consistent lighting [daylight]. On the
negative	side,	1)	ambiguous	objects;	2)	signage	unrelated	to	US	roads;	3)	skewed	vehicle	aspect

05 of 34

ratios; 4) primary focus on the back of vehicles with some negative reinforcement of the leading
edge.	As	a	result,	the	input	data	was	filtered	for	unlikely	extraneous	elements	such	as	signage,	
odd	skews,	sky,	median,	and	oncoming	vehicles.	New	data	was	added	to	complete	the	vehicle	
angles along the lane trajectory.

Training	a	classifier	with	whole	images	of	vehicles	may	lead	to	“all-or-nothing”	situations	and/
or less accuracy predicting images with partial vehicles. This concept led to experiments with
16	pixel	vertical	strips	to	identify	incoming	vehicles	on	the	periphery.	To	illustrate,	the	following	
64×64 pixel image is categorized in the ‘Extras’ dataset as ‘non-vehicle’:

Slicing	a	64×64	‘non-vehicle’	image	into	vertical	strips,	then	horizontally	into	cells	of	16×16	pixels.

While	the	majority	of	the	image	does	not	contain	a	vehicle,	if	it	is	quartered	into	vertical	

06 of 34

strips,	the	far	right	strip	can	be	assigned	to	the	‘vehicle’	class.	If	each	strip	is	further	extracted	
into	16×16	pixel	squares,	then	clearly	three	of	the	‘cells’	can	be	assigned	to	the	vehicle	class.	
Additional	data	policies	were	defined	as:	1)	non-vehicle	cells	cannot	contain	any	part	of	a	
vehicle; 2) over 50% of the pixels in vehicle cells must be recognizable automobile features.

With	this	system,	an	improvement	in	matching	incoming	lower	vehicle	segments	such	as	
wheels/hood	can	be	expected.	Initial	training	accuracy	results	were	encouraging	(approx	98%).	
Adding spatial binning of color features increased accuracy to just over 99%.

Software pipeline design
A chain of processing elements is arranged to accomplish three tasks: load a set of training
images (which have been labeled as either ‘vehicle’ or ‘non-vehicle’); extract identifying features;
and	train	a	classifier	model	to	‘recognize’	the	difference	between	the	two	classes.

A second chain of functions is arranged to examine a video stream with three objectives:
windowing	on	targeted	regions	of	expected	traffic,	then	making	a	prediction	of	what	class	is	
present	based	on	the	features	perceived,	and	visualizing	the	filtered	results.

Referring	to	the	illustration	on	the	next	page,	the	design	consists	of	two	inter-related	pipelines,	
A->E	for	training	of	the	classifier	and	0->9	for	annotating	video.

07 of 34

Pipeline architecture

Training	images	(A)	are	read	and	sliced	into	cells	(B)	and	then	preprocessed	(C).	The	complete	
training	set	produces	a	scaler	data	file	(F)	for	use	by	the	second	pipeline.	The	preprocessed	data	
is	used	for	training	(D)	of	the	classifier	model	(E).

Source	video	(0)	is	windowed	and	scaled	spatially	(1).	After	preprocessing	(2),	data	is	collected	
into	batches	(3)	and	sent	for	prediction	(4)	by	the	classifier.	The	results	are	filtered	(5)	where	
positive	cells	are	heat-mapped	(6),	bounding	boxes	determined	(7),	frame	annotated	(8),	and	
finally	output	(9).	Cells	can	be	extracted	after	(1)	and	utilized	as	additional	training	data	(A)	to	
improve	the	classifier.

08 of 34

Histogram of Oriented Gradients (HOG)
A	customized	high-performance	implementation	of	the	HOG	method	calculates	the	first	order	
Sobel derivative in both x and y. The resulting coordinate pairs are converted from Cartesian
coordinates	to	polar	(angle	and	magnitude).	Next,	angles	are	binned	and,	along	with	magnitude,	
grouped into 4×4 sets (also called cells in HOG terminology). The magnitudes are then
multiplied	by	the	number	of	angle	occurrences	(technically,	summed	multiple	times).	Finally,	
the resulting vector is normalized as a block to unit length to enhance invariance to changes in
illumination. [The ‘L1-sqrt’ method is also implemented as of Jan’17 in skimage.feature.hog() at
the block level.]

Example of visualized Histogram of Oriented Gradients of both ‘vehicle’ and ‘non-vehicle’ class cells.

09 of 34

The L1-norm of a non-negative vector 𝑣	is	defined	as	the	sum	of	its	elements:

The HOG feature vector is computed as the element-wise square-root of the histogram vector
scaled	by	the	L1-norm.	Epsilon	(ε)	is	a	small	constant	to	avoid	division	by	zero:

Determined	through	iterative	experimentation	to	minimize	the	classifier	loss	function,	the	final	
selection of HOG parameters include color space: YCrCb; orientation bins:12; cell	size:	(4,4);	color	
channels: all three. Each channel produces a 192-element feature vector.

Code reference:	The	implementation	is	defined	as	function	histoGrad() in p5extract.py at line 13.

10 of 34

Spatial binning of color
While	HOG	features	inform	the	classifier	of	orientation,	no	color	information	is	present.	Coarse	
spatial	binning	provides	additional	features	in	the	scene,	such	as	color	and	position	of	black,	
white,	brown,	gray,	blue,	etc.	Each	input	image	in	the	YCrCB	color	space	is	resized	to	a	4×4×3	
array	and	flattened	to	a	48-element	feature	vector.

Example of visualized coarse spatial binning of color.

Code reference:	The	implementation	is	defined	as	function	get_spatial() in p5extract.py at line 38.

11 of 34

Classifier
A	Keras	non-linear	binary	classifier	running	on	a	discrete	GPU	is	defined	as	follows:

Classifier	model

The input (E1) consists of a one-dimension 624-element feature vector. A dropout of 0.5
(50%) is applied (E2) followed by a 255-node fully-connected layer (E3) with ReLU activation.
Another dropout of 0.5 is applied (E4) and followed by a 127-node fc-layer (E5) with ReLU. A
final	dropout	of	0.5	is	applied	(E6)	before	a	final	1-node	fc-layer	(E7)	with	sigmoid	activation	
to produce a probability output in the range of 0 to 1. The model is trained with an Adam
optimizer and a logarithmic loss function (binary_crossentropy).

The input vector is composed of the three appended 192-element HOG feature vectors (one
for each color channel) and further appended with the 48-element spatial binned color vector.
The collective column for each feature is scaled to zero mean with unit variance using sklearn
StandardScaler.	(The	feature	values	are	centered	at	zero,	equally	scaled,	with	standard	deviation	
of one.)

12 of 34

Code reference:	The	classifier	model	is	defined	at	line	152	in	
p5train.py and trained at line 174. The function to prepare
the	training	data	is	defined	as	extract_features() at line 33 in
the	same	file.

Visually stacked input vector

13 of 34

Sliding window search

Experiments with designing several sliding
window arrangements reveal a cellular grid
structure (the underlying lowest common
denominator of overlapping windows).

A framework of cells is constructed along
the highest probable travel paths of vehicles
in the adjacent lanes.

Sliding windows reduced to cells

The	lanes	are	overlaid	with	15	contiguous	strips	having	an	aspect	ratio	of	4-to-1,	fitted	along	
the lines leading to the vanishing point. The height of the ‘closest’ strip on the right side of the
screen	is	sized	to	the	height	of	a	standard	passenger	car,	similar	to	the	training	data.	

Approximations of the windows are diagrammed below. The trajectory path of lane 1 aligns with
the	center	line	of	the	middle	two	rows	of	the	window	grid,	while	the	trajectory	of	lane	2	aligns	
with	the	center	line	of	the	upper	two	rows.	This	arrangement	creates	two	effective	spatial	scales	
for	the	classifier	to	learn:	1X	and	½X.

14 of 34

Region of interest consists of sliding windows along probable vehicle trajectories.

In	line	with	performance	goals,	resampling	is	avoided.	Due	to	the	cellular	architecture,	adjacent	
cells group into a multitude of overlapping window combinations which can be bounded at the
maximum extents.

15 of 34

Normalized Lane Space (NLS) grid
Sampling from this manifest of regions and scaling each image to 16×16 pixel produces what
can	be	termed	‘normalized	lane	space’	or	NLS,	which	is	represented	by	a	two-dimensional	matrix	
of 4 rows and 15 columns.

Normalized	lane	space	matrix	representing	window	regions	of	interest.	

The number of possible sub-rectangles in an m×n array of cells is given by the formula:

Thus,	the	NLS	grid	structure	provides	a	total	of	1200	sub-rectangles	(including	squares).

Sample	points	collected	from	the	overlay	illustration	were	fitted	to	polynomials.

16 of 34

Let	X	and	Y	be	screen	coordinates	and	S	be	the	size	of	a	screen	cell.

Plot	of	X,	Y,	and	S

In	the	implementation,	a	video	frame	is	sampled	in	strips	determined	by	inserting	the	NLS	
matrix column index (denoted by lower-case x) into the above polynomials: The the resulting
screen coordinates are the top-left point of a 4 row × 1 column (4S × S) strip. A square of size S
is sampled and scaled to 16×16 pixels. The S value is repeatedly added to Y to move down the
screen to sample the next 3 cells. This strip locating process is repeated 15 times to sample a
total of 60 screen cells along the path.

17 of 34

Code reference:	The	sliding	window	search	system	is	defined	as	processStrip() at line 183 in
p5pipeline.py with mathematical support from transformIdxToScreen()	defined	at	line	79.

Operation of the pipeline
Below	are	sample	images	demonstrating	the	pipeline	in	action.	

Note	the	early	detection	of	the	black	vehicle	 									Red	cells	are	negative,	green	cells	are	positive	

18 of 34

Amber	cells	are	predominantly	white																							Bounding	boxes	are	indicated	in	azure	blue

Classifier	reliability	improvements:	1)	eliminate	ambiguous	images	such	as	cells	containing	less	
than 50% vehicle features; 2) capture negative cells between two positives for further manual
assessment with potential inclusion in the training data; 3) add spatial binning of color.

Classifier	performance	improvements:	1)	add	batching	layer	to	improve	prediction	response	
time by reducing the overhead of making multiple calls to the GPU per frame processing cycle.
2) alternate video frame processing.

19 of 34

Video implementation

The following example images were produced at the output of each stage of the pipeline (steps
0	through	9	in	the	design	diagram	on	page	7).	For	consistency,	all	visualizations	are	from	video	
frame 922.

Step 0
The	initial	step	in	the	pipeline	reads	a	source	frame	from	the	video	file.

Source video frame 922

20 of 34

Step 1 (part A)
Windowed snapshots are taken from the frame along the probable vehicle trajectories.

Sliding windows cell placement along trajectories

21 of 34

Step 1 (part B)
Each snapshot is spatially scaled to 16×16 pixels.

Rescaled	into	NLS	grid	cells

22 of 34

Step 2
Each cell is preprocessed by 1) converting to YCrCb color space; 2) extracting histogram of
gradient orientation features; 3) extracting spatial binning of color features; and 4) transforming
with	the	zero-mean	unit	variance	scaler	determined	by	the	training	data.	Below	is	a	624	element	
preprocessed	vector	(squared	into	a	25×25	array	and	output	as	a	PNG	file).

Preprocessed	vector	from	x:834,	y:408

23 of 34

Step 3
The	60	cells	are	collected	into	a	batch.	In	the	following	data	capture,	the	vectors	are	ready	for	
presenting	to	the	classifier.

Preprocessed batch of feature vectors

24 of 34

Step 4
The	output	of	the	classifier	ranges	from	0	to	1	which	translates	to	a	prediction	ranking	captured	
below (in 5 discrete levels) where the color violet through aqua indicate the prediction value.

Prediction results

25 of 34

Step 5
Cells	with	a	confidence	value	over	0.9	are	considered	a	probable	vehicle.

Red cells indicate a positive match to the vehicle class

26 of 34

Step 6
Cells	are	added	to	a	queue	of	length	50,	enough	to	span	several	frames.	Each	cell	in	the	queue	
represents	a	potential	on-screen	vehicle-class	cell,	and	therefore	added	to	a	‘heat’	map.	Cells	
are rendered in the heat map with an additional 5 pixels added to the side measure in a screen-
sized array. This slight overlapping fuses the cell into neighboring structures. False positives are
reduced	by	filtering	areas	from	the	heat	map	below	a	threshold	of	1.

Heat map (close up) Position in frame Reference frame

Code reference:	False	positives	are	filtered	by	the	function	apply_threshold()	defined	at	line	98	in	
p5pipeline.py and invoked at line 139. The key function addBoxToList()	is	defined	at	line	128.

27 of 34

Step 7
Bounding	boxes	are	determined	from	the	heat	map	using	the	label function from SciPy.ndimage.

Heat	map	yields	bounding	boxes											Reference	frame																																						Box	bisection

Code reference: Two rules are applied during box construction in the function draw_labeled_
bboxes()	defined	at	line	103	in	p5pipeline.py:	

1) Abnormal aspect ratios are created where two vehicles are near each other. Any bounding
box greater than 100 pixels in height with a width over 2.68 times its height is bisected vertically
into two adjacent boxes.

2)	To	assist	the	false-positive	filter	in	cases	where	adjacent	cells	are	rejoined,	filtered	out,	yet	a	
remaining	common	joint	exists,	only	bounding	boxes	of	width	and	height	greater	than	or	equal	
to the minimum on-screen window size [14 pixels] are rendered.

28 of 34

Step 8
The	filtered	bounding	box	list	is	rendered	on	a	diagram	overlay...

Overlay	complete	and	ready																			Reference	frame																																						Blended	result

...and subsequently blended with the video frame using the OpenCV addWeighted() function.

29 of 34

Step 9
The	final	step	in	the	pipeline	is	appending	the	processed	frame	to	the	new	video	sequence	file.

Output from the pipeline

30 of 34

Final video
The	final	annotated	video	can	be	found	in	the	output_images folder or on Vimeo through the
link below. Additional videos in the folder include diagnostic tests. The folder also contains a
subfolder of images of captured at the output from each stage of the pipeline.

http://vimeo.com/208120673

http://vimeo.com/208120673
http://vimeo.com/208120673

31 of 34

Discussion
Approach
The previous project inspired placement of sliding windows in perspective. The normalized
cellular grid structure was discovered as a result of experimenting with scaling along the
trajectories and searching for a lowest common element that would match the training data
size and shape.

Iterative	improvements	made	during	development:	Generalized	the	classifier	further	by	
training with additional data from the P4 challenge video and regularizing with dropout;
Cycled	outputting	cells	over	a	threshold	and	then	sorting	these	for	retraining	the	classifier;	
Added spatial binning of color to the feature extraction stage.

Performance
The targeted region of interest helps reduce search time. The pipeline processes the video
stream	at	10.11	fps	on	a	Xeon	W3520	(equivalent	to	i7	920	first	generation)	at	2.8GHz	with	12GB	
memory	(Windows	10).	The	system	includes	a	discrete	GPU	(GTX	1070).	Other	performance	
enhancements include alternating frame processing. Frame rates using scikit-learn.svc function
did not meet the performance prerequisite. Scikit-image hog() function performance was not
adequate to meet the performance prerequisite. A customized implementation of the HOG
method was derived from the open source code found in the OpenCV examples and informed
by	references	[1],	[2],	[3]	and	through	online	forum	discussion.

32 of 34

Challenges
If	a	positive	cell	has	no	immediate	neighbors,	it	may	be	rendered	as	an	orphan	bounding	box,	or	
sparse	cells	across	a	larger	vehicle,	as	evidenced	in	the	p4	challenge	video.	If	subjected	to	new	
conditions,	the	system	needs	to	be	retrained	with	additional	data.	Occasionally,	cv2.cartToPolar()
returns	a	value	of	2π	which	over-bins	the	angles	(expecting	the	range	0	through	11	and	never	
12).	To	resolve	this,	the	angle	is	multiplied	by	(1-ε)	which	shifts	the	binning	negligibly.	A	large	
and	refined	training	dataset	would	extend	this	proof-of-concept	to	a	wider	range	of	vehicles.

Further research
The	current	solution	is	tolerant	to	the	curvature	of	the	road	in	the	supplied	video;	however,	
higher rates of curvature would misalign the lanes. An area to explore is modifying the trajectory
polynomials	with	data	derived	from	the	overhead	view	of	the	advanced	lane-finding	project.	The	
NLS	method	can	be	extended	to	overlapping	cells	for	increased	location	accuracy.

Find predominant color of vehicle to determine a threshold to produce a binary image of
the	vehicle	using	the	color	range	filter.	Additional	locator	regions	can	be	positioned	to	find	
the	edges	of	the	identified	vehicles.	With	the	leading,	trailing,	and	top	edge	positions,	a	
more	accurate	target	location	can	be	rendered...ideally	a	rig	transformed	to	fit	the	vehicle	as	
perspective	changes.	The	classifier	can	be	trained	with	a	label	to	identify	a	tail	light	class	to	
determine an additional point for the rig transform (see visualization below).

33 of 34

Proposed rig registered to accurate vehicle position

34 of 34

References

Analytical tools
	Microsoft Excel
	Adobe Illustrator

Scikit-image
	scikit-image.org

Open Source
Computer Vision
Library
	opencv.org

NumPy Library
	numpy.org

Histogram of Oriented Gradients
	en.wikipedia.org/wiki/Histogram_of_oriented_
gradients [1]
	pascal.inrialpes.fr/soft/olt
	github.com/scikit-image/scikit-image/blob/
master/skimage/feature/_hog.py												[2]
	robots.ox.ac.uk/~vgg/publications/2012/
Arandjelovic12/arandjelovic12.pdf										[3]
	github.com/opencv/opencv/blob/master/
samples/python/digits.py

