
May 10, 2019

Advanced Lane Finding
 Proximity Algorithm research by James W. Dunn

Goal: Calibrate a camera lens
and annotate a video sequence
with identified lane edges, curvature
radius, and center drift.

02 of 18

Contents
03 Analysis
05 Camera calibration and distortion correction
07 Perspective transform
08 Method to identify lane lines
12	 Polynomial	fitting	of	lines																																	
13 Curvature and lane drift
14	 Annotation	and	final	video																																
16 Discussion
18 References

03 of 18

Analysis
The	supplied	project	video	contains	50	seconds	of	northbound	footage	through	the	S-curves	
along	the	Junipero	Serra	Freeway	near	Woodside	Glens.

I-280	from	approx	GPS	37.443855,	-122.255386	to	GPS	37.446226,	-122.272631,	a	traveled	distance	of	about	1595.7m.

The	video	begins	just	before	Exit	27,	in	a	gentle	left	turn	of	914	meter	radius	followed	by	a	
straight	section	of	about	360	meters	(indicated	by	the	dashed	red	line	above).	The	straight

04 of 18

terminates	at	the	end	of	a	bridge	(over	Farm	Hill	Boulevard)	followed	by	a	slow	right	turn	of	
1037m	radius.	Just	after	the	halfway	point	through	this	turn	is	another	bridge	(over	Cañada	
Road).	The	video	ends	as	the	road	straightens	out	of	the	turn.	Average	speed	over	this	distance	
is	114km/h	(or	71.4mph).	Although	lighting	conditions	appear	to	be	ideal	with	high-contrast	
pavement	markings,	there	are	incongruous	anomalies	near	the	bridges.	These	include	abrupt	
road-surface	color	shifts	from	dark-	to	light-gray,	sporadic	cast	shadows	from	vegetation,	and	
several	vehicle/camera-pitch	bounces	caused	by	the	uneven	road	surface	at	the	approach	slabs.

Two	challenge	videos	are	also	provided.	The	first	is	located	on	route	85NB	from	the	start	of	
a	detour	onto	the	median	and	crossing	under	the	Homestead	Road	overpass.	Distance	is	
approximately	497.3m	in	16s.

The	advanced	challenge	video	is	located	on	route	84SWB	(La	Honda	Road)	from	a	point	after	
the	bend	beyond	the	Fox	Hill	Rd	turn-off,	descending	through	a	forest	area	to	a	15mph	hairpin	
bend,	and	up	to	a	cement	structure	on	the	right.	Distance	is	548.7m	in	47s.

Pavement	marking	measurements	and	specifications	indicate:	lanes	are	approximately	3.64m	
wide,	white	lines	are	about	4m	long	with	10.64m	gaps,	reflectors	are	positioned	every	14.64m,	
and	painted	lines	are	100mm	wide.	The	challenge	video	lane	width	is	about	3.05m.

05 of 18

Camera calibration and distortion correction
OpenCV findChessboardCorners()	is	used	to	detect	corners	in	the	calibration	images.	Then		
calibrateCamera()	is	called	to	calculate	the	distortion	coefficients	and	the	camera	matrix.	
This	calibration	data	is	saved	as	a	serialized	data	file.	Images	2,	3,	17,	and	18	were	sufficient	
for	calibration.	The	code	for	calculating	the	distortion	matrix	of	the	camera	can	be	found	in	
calibrate.py	at	line	54.	An	example	is	provided	below.

Distorted	calibration	image	(left)	and	corrected	image	(right).

As	there	is	no	EXIF	data	provided,	it	must	be	assumed	that	the	calibration	images	share	the	
same	lens	settings	as	those	in	the	video	footage.	(Confirmed	with	Ryan	Keenan.)

06 of 18

Indeed,	to	approximate	the	camera’s	field	of	view	and	focal	length,	if	the	corrected	video	is	
displayed	full-screen	on	a	24”	monitor	and	viewed	closely	from	a	distance	of	10	inches,	the	
vehicles	in	other	lanes	appear	to	be	correctly	shaped.	This	explains	the	apparent	pincushion	
distortion	when	viewed	from	a	greater	distance,	where	the	vehicle	shapes	begin	to	elongate.	
(Most	notable	in	the	white	car	in	the	“corrected”	image	below.)

Distorted	test	image	(left)	and	corrected	image	(right).

07 of 18

Perspective transform
To	determine	the	perspective	transform	into	an	overhead	view,	four	corners	of	a	lane	were	
pinpointed	on	a	straight	segment	of	the	road.	A	distance	of	29.28m	(twice	the	distance	between	
two	reflectors)	was	selected	for	the	lane	depth.	Source	trapezoidal	points	(x,y)	are	(557,460)	
(557+166,460),	(84+1112,670),	and	(84,670).	Corresponding	rectangular	destination	points	for	
the	perspective	translation	and	rotation	are	(1273,156),	(1273,393),	(25,393),	and	(25,156).

Calibrated	video	frame	number	409	(left)	and	corresponding	overhead	view	after	perspective	transform	(right).

08 of 18

To	maintain	lane	aspect	ratio	and	an	equal	x	and	y	scale,	a	“rotated”	perspective	transform	is	
applied	which	orients	the	overhead	viewed	lanes	along	the	screen	x-axis	(ascending	to	the	
right).	The	y-axis	therefore	measures	the	distance	between	lane	lines.

Operating	at	a	scale	of	160	pixels	to	3.6576m,	the	resulting	virtual	lane	measures	160px	(rows)	
by	1248px	(cols)	which	is	convenient	to	work	in	a	standard	x-y	screen	coordinate	system	and	
to	display	horizontally	within	a	1280x720	landscape	image.	The	function	that	performs	the	
perspective transform is named makeOverhead()	and	can	be	found	in	pipeline.py	at	line	150.

Method to identify lane lines
An	optimized	filter	array	model	is	constructed	to	search	for	and	locate	pavement	markings.	
There	are	12	filters	per	lane-line,	spaced	114	pixels	apart.	Each	filter	measures	58x7	pixels.	These	
filter	regions	ride	the	lines	from	frame	to	frame	like	rails.

Four	custom	Python	classes	were	created	to	queue	data	points,	manage	lane	edges,	model	the	
lane	structure,	and	provide	execution	control.	The	filter	array	is	initialized	at	a	given	lane	width	
with	respect	to	camera	center	(under	the	assumption	of	a	straight	road).	As	the	first	frame	is	
processed,	rules	are	applied	which	“snap”	the	filter	construct	onto	the	left	line.

09	of	18

Early	planning	stage	for	the	filter	array	construct	-	overlaying	a	frame	from	the	advanced	challenge	video.

In	subsequent	frames,	the	search	locus	of	the	left	lane	line	is	initialized	with	the	findings	from	
the	previous	frame.	The	right	lane	line	is	initialized	at	a	distance	equal	to	that	of	the	current	
frame’s	left	line	from	the	averaged	virtual	center	line.	A	threshold	is	applied	to	each	filter	with	a	
fallback	threshold	if	no	line	pixels	are	detected.

10 of 18

Video	frames	98	and	409	with	24	threshold	filters	applied	to	create	binary	images	containing	likely	lane	pixels.	
Red	regions	indicate	a	zero-result	filter	(no	line	found).

A	histogram	of	each	filter’s	binary	image	is	convolved	with	a	5-pixel	window	to	create	a	product	
area	with	peak	values	near	the	center	of	the	line.	[Wikipedia:	Convolution]

Filter	binary	image																														Histogram																																											Convolution

The	NumPy	argmax()	function	is	applied	to	locate	a	centroid	candidate	for	the	y-value.	Lane	
line	pixels	are	identified	by	the	locateLines()	function	in	pipeline.py	at	line	200,	assisted	by	
processFilter()	at	line	185.

11 of 18

Close-up	views	of	3	binary	threshold	filters:	yellow	line	on	asphalt	(left)	and	white	line	on	cement	bridge	(right).

Rules	are	applied	to	maintain	tracking	of	lines.	For	the	project	video,	a	maximum	rate	of	
curvature	indicates	a	deviation	of	no	more	than	7	pixels	between	filters.	The	cascade	effect	
of	this	rule	adjusts	the	subsequent	filter’s	y-value	into	a	targeted	search	region	of	the	next	
section	of	the	line.	While	tracking	the	yellow	line,	if	an	HLS	threshold	yields	a	zero	value,	then	
a	color	range	filter	is	attempted.	Similarly,	if	a	range	threshold	on	the	white	line	fails,	the	
threshold	is	relaxed	slightly.	If	a	filter	detects	a	line	candidate	beyond	a	specified	distance,	then	
it	is	considered	an	outlier.	Because	there	is	a	3-to-1	ratio	of	expected	gaps	in	the	white	line,	
it	is	assumed	to	be	an	average	distance	from	the	yellow	line.	Confidence	in	line	detection	is	
determined	as	a	percentage	of	pixels	found	on	the	convolved	histogram:	line	candidates	falling	
below	60%	are	ignored.

12 of 18

Polynomial f﻿itting of lines
Left	and	right	line	data	is	collected	from	the	filters	into	a	circular	queue	over	three	frames.	
The	center	line	is	the	midpoint	between	left	and	right	and	is	queued	for	a	length	of	15	frames.	
Averages	are	used	to	fit	second-order	polynomials	using	the	NumPy	function	polyfit().

Examples	of	lane	line	pixels	identified	and	overplotted	with	a	fitted	curved	functional	form.

The	determined	coefficients	are	stored	in	the	Line	class	where	a	lineF()	method	retrieves	
y-values	given	an	x-value.	Polynomials	are	fitted	by	the	drawLane()	function	at	line	253	in	
pipeline.py	with	the	assistance	of	the	class	method	fitToPoly()	defined	at	line	80.

13 of 18

Curvature and lane drift
Two	methods	of	curvature	calculation	were	explored:	A.	the	three-point	exact	solution	(the	
intersection	of	the	perpendicular	bisectors	of	two	edges)	and	B.	the	second	order	equation	for	
approximation	of	radius	of	curvature:

The OpenCV routine minEnclosingCircle()	implements	method	A	and	is	given	three	points	along	
the	average	center	line;	the	first	being	640px	behind	the	vehicle	in	overhead	space,	the	second	
at	the	zero	point	(representing	the	present	vehicle	location),	the	third	at	640	pixels	ahead	of	
the	vehicle.	The	two	methods	were	compared	in	an	A/B	test;	the	difference	in	results	for	the	
complete	set	of	video	frames	was	within	2	meters.

Calculation	of	the	radius	is	performed	using	method	A	in	drawData()	at	line	355	in	pipeline.py	
with	assistance	by	function	radius()	defined	at	line	313.

Lane	drift	is	the	difference	from	the	center	line	y-value	at	x=0	to	camera	center	(which	is	a	fixed	
y-value	of	275).	This	calculation	can	be	found	at	line	367.

Rcurve = (1+(2ax+b)2)3/2
 |2a|

14 of 18

Annotation
The	undistorted	video	is	annotated	with	the	fitted	lane	displayed	in	deep	blue	with	a	4	pixel	
gap	representing	the	center	line.	The	filtered	regions	are	represented	along	the	lane	lines	with	
azure	blue	rectangles.	Curvature	radius	is	updated	every	20	frames	and	displayed	in	meters;	left	
curvature	is	a	negative	value.	Lane	drift	is	displayed	in	centimeters;	left	of	center	is	a	negative	
value.	Lane	width	is	calculated	frame	by	frame.	A	filter	diagnostics	panel	is	displayed	in	the	
upper	left	corner;	red	indicates	the	filter	did	not	find	a	line;	white	indicates	pixels	which	passed	
the	filter	threshold	and	move	on	to	the	convolution	stage.

Annotated	frames	98	(left)	and	409	(right)	indicating	lane	boundaries,	curvature,	and	position	from	center.

15 of 18

The	final	annotated	video	can	be	found	in	the	output_images	directory	or	on	Vimeo	through	the	
link	below.	Additional	videos	in	the	directory	include	overhead	projection,	filter	tracking,	line	
fitting,	and	lane	painting.

http://vimeo.com/204613721

http://vimeo.com/204613721
http://vimeo.com/204613721

16 of 18

Discussion
Approach
Several	days	were	invested	in	the	analysis	portion	of	this	project	to	fully	understand	the	
geometry	of	what	lay	before	the	camera.	Adobe	Illustrator	was	helpful	in	marking	up	sample	
frames	and	measuring	proportions.	Of	great	help	was	Google	Maps	for	scouting	and	surveying	
the	driven	route.	Microsoft	Excel	was	useful	for	recording	measurements	and	determining	scale	
conversions.	Iterative	filter	exploration	came	next	and	eventually	a	rules-based	method	was	
discovered	to	localize	the	filtering	to	a	highly-targeted	array	of	regions	along	the	expected	path	
of	a	road	line	with	a	tolerance	to	accommodate	curvature.

Performance
Due	to	the	filtering	on	narrow	regions	of	interest,	the	pipeline	processes	the	50	second	video	in	
about	3	minutes	on	a	Xeon	W3520	(equivalent	to	i7	920	first	generation)	at	2.8GHz	with	12GB	
memory.	Further	performance	improvements	could	be	made	by	serializing	each	warped	video	
frame	such	that	subsequent	executions	can	avoid	the	perspective	transform.

Challenges
Shadow	areas	and	low-contrast	lines	(like	those	in	the	challenge	video)	cause	filter	noise	or	
zero-results.	Additional	threshold	levels	should	be	identified	along	with	confidence	ranking	to	
facilitate	cascading	fall-through	or	conditional	pre-selection.

17 of 18

High-curvature	roads	such	as	those	in	the	advanced	challenge	require	an	alternate	method	of	
guidance	to	avoid	derailment	of	the	filter	structure.	The	improved	method	would	1)	follow	the	
lane	lines	using	dynamically	determined	intervals,	2)	orient	the	filters	perpendicular	to	the	vector	
found	from	the	prior	region,	and	3)	optionally	integrate	GPS	map	data.

Further Research
A	convolutional	network	model	can	be	trained	to	identify	lines	using	the	filter	regions	as	feature	
input.	The	existing	threshold	system	can	provide	line	location	values	as	supervised	target	data.	
The trained model could then operate in place of the threshold system.

It	may	help	to	track	pavement	features	through	multiple	frames.	This	could	provide	
additional	data	such	as	particle	direction,	velocity,	line	lock,	shape	continuity,	and	center	
pavement	signage.

18 of 18

References

Analytical tools
	Microsoft	Excel
	Adobe Illustrator
	Google	Maps

Curvature
	intmath.com/applications-
differentiation/8-radius-
curvature.php	(see	method	
1	for	an	approximation	and	
method	3	for	exact)
	en.wikipedia.org/wiki/
Smallest-circle_problem

Pavement marking
specif﻿ications
	dot.ca.gov/trafficops/camutcd/
docs/TMChapter6.pdf
	mutcd.fhwa.dot.gov/
htm/2003r1/part3/part3a.htm
	What	are	road	markings:	
youtu.be/_KaHbbVxJWE

Lane Detection
	Lane	Detection	and	Tracking	
with	MATLAB:	youtu.be/
SFqAAseL_1g
	Lane	Detection	Vanishing	
Point	Tracking:	youtu.be/__
g2gppGtnQ

Color detection
	pyimagesearch.
com/2014/08/04/opencv-
python-color-detection

Convolution
	en.wikipedia.org/wiki/

Convolution

Open Source Computer
Vision Library
	opencv.org

NumPy Library
	numpy.org

